Syrinix

by Rebecca Shanahan
Wave Blue
Oct 24, 2018

The Issue Facing Southern Nevada Water Authority

In March 2016, the Las Vegas Valley Water District (LVVWD) experienced pipeline breaks at three locations in close proximity. Working with its partner agency, the Southern Nevada Water Authority (SNWA), water system operators suspected pressure transients were to blame, but the agency lacked the technology necessary to read rapid pressure spikes, which can occur for just a fraction of second.

For the water agencies to know which operational systems were to blame for the apparent transients, and how much to adjust them, it needed better pipeline flow data. SNWA and LVVWD partnered with Syrinix to address the issue by launching a pilot with the Syrinix Pipeminder-S technology.

Result of Pilot

The Pipeminder-S units were installed on small 1/4in valve connections on existing air-vac devices and automatically plotted their GPS locations via RADAR’s map interface. The pressure information was sent remotely, then via cellular connection. The minimum, mean and maximum pressure for each 15-minute interval of the day were recorded.

After one week, Syrinix concluded its pilot study, reporting clearly visible patterns of extreme pressure peaks, in some cases exceeding over 300 psi, which occurred in less than one one-hundredth of a second. Isolating the data to a moment in which a .047 second transient occurred, Syinix measured a water pressure spike from 13 psi to 323 psi, followed immediately by a drop to full vacuum. The PVC pipe was designed for a maximum pressure of 150 psi, less than half the transient force that caused the breaks.

Syrinix provided SNWA with transient graphs. When overlaid with the SNWA?s pump schedule, it became clear that pressure spikes were caused by specific valve systems. For the next week, water officials used Pipeminder-S devices to analyze whether the incidence and magnitude of transients could be lowered to around 150 psi when valve speeds were reduced.

“The high resolution monitoring gave us greater visibility, which in turn meant we could plan the specific operation repairs with the conviction that we were at the direct root of the problem,” said Kevin Fisher, LVVWD’s director of water quality and treatment. “The cost of one saved burst equated to the cost of the installation and the hardware purchased. Therefore, we’re happy that the Syrinix units not only solved our problem but saved us money and time.” In other words, Fisher added, “Syrinix technology gave us the information we required to understand why these line breaks were happening, which enabled us to act and make changes on the line to ensure it didn?t keep happening.”

Specifically, the data graph indicated an operational pressure of 10 psi, with approximately fifteen unexpected pressure transients exceeding 320 psi over a 17-hour period. Once adjustments were made to the relevant valve systems, the maximum observed pressure reduced from 323 psi to 160 psi.

The SNWA adjusted the speed and order in which individual pumps were turned on and continues to use Pipeminder-S to see whether alternative schedules have a positive or negative effect on pressure flow. Through the 50% reduction in transient magnitude, it has mitigated the risk for breaks and leaks.

Listen to a detailed interview with SNWA discussing this pilot:

Podcast Episode – Syrinix Pilot at SNWA

Opportunities for Positive Impact in Southern Nevada and Beyond

Las Vegas is formed of over 375,000 active services, with 23 active pressure zones and more than 4,500 miles of pipe ranging from 4-inch to 102-inch in size. There are more than 1,600 miles of service laterals. The area houses 79 reservoir basins and tanks that collectively hold nearly 1 billion gallons of water, 53 pumping stations with the capacity to move more than 1 million gallons of water per minute and more than 6,500 miles of water transmission and distribution pipelines.

“The utilities are geared to find leaks and fix them,” said James Dunning, CEO of Syrinix. “Some utilities have pipelines that are older than they should’ve been allowed to get, waiting for them to fail isn’t enough. You’ve got to get ahead of the curve and stop pipelines from failing in the first place.”

Bronson Mack, spokesman for the SNWA, echoed that point: “If you as a water utility can do some due diligence to minimize the wear and tear on underground infrastructure, you are going to extend the life of that infrastructure, save rate payer dollars, and prevent emergency shutdowns, brakes and repairs from occurring. The Syrinix system gives us a view inside our pipeline as to how the water is behaving, and we can optimize our operations accordingly.”

About the Syrinix Technology

Founded in the UK in 2004, and based now in Las Vegas, Syrinix had developed technology to measure water pressure fluctuations 128 times per second during every fifteen minute interval of the day. The device is called Pipeminder-S and it connects to hydrants or other valve connections, from which it sends data to RADAR, the Syrinx online portal.

“At a high level, what it’s about is giving the utility a much more detailed view of what’s happening on their network,” said Dunning. “These pressure waves move over a thousand meters every second. So if you’re only monitoring every minute or so to see if the system is okay then you’re going to miss all these pressure waves that ping around your network, straining your pipes.”

Though recognized primarily as a technology firm, Syrinix identifies itself as a risk-management company too since its data allows public utilities to avoid those repairs that over time cause water rate increases.

http://www.syrinix.com/

Translate ยป